On geometric progressions on Pell equations and Lucas sequence
نویسندگان
چکیده
منابع مشابه
Arithmetic Progressions on Pell Equations
IF Introduction sn IWWW fremner I onsidered rithmeti progressions on ellipti urvesF fremner onstruted ellipti urves with rithmeti progressions of length UD iFeF rtionl points @X; Y A whose XE oordintes re in rithmeti progressionF sn following pper fremnerD ilvermn nd znkis P showed tht sugroup of the ellipti urve E@QA with E X Y 2 a X@X 2 n 2 A of rnk I doe...
متن کاملOn Pell, Pell-Lucas, and balancing numbers
In this paper, we derive some identities on Pell, Pell-Lucas, and balancing numbers and the relationships between them. We also deduce some formulas on the sums, divisibility properties, perfect squares, Pythagorean triples involving these numbers. Moreover, we obtain the set of positive integer solutions of some specific Pell equations in terms of the integer sequences mentioned in the text.
متن کاملOn Some Identities and Generating Functions for k-Pell-Lucas Sequence
We obtain the Binet’s formula for k-Pell-Lucas numbers and as a consequence we obtain some properties for k-Pell-Lucas numbers. Also we give the generating function for the k-Pell-Lucas sequences and another expression for the general term of the sequence, using the ordinary generating function, is provided. Mathematics Subject Classification: 11B37, 05A15, 11B83.
متن کاملOn the intersections of Fibonacci, Pell, and Lucas numbers
We describe how to compute the intersection of two Lucas sequences of the forms {Un(P,±1)}n=0 or {Vn(P,±1)} ∞ n=0 with P ∈ Z that includes sequences of Fibonacci, Pell, Lucas, and Lucas-Pell numbers. We prove that such an intersection is finite except for the case Un(1,−1) and Un(3, 1) and the case of two V-sequences when the product of their discriminants is a perfect square. Moreover, the int...
متن کاملOn sequences without geometric progressions
Several papers have investigated sequences which have no k-term arithmetic progressions, finding bounds on their density and looking at sequences generated by greedy algorithms. Rankin in 1960 suggested looking at sequences without k-term geometric progressions, and constructed such sequences for each k with positive density. In this paper we improve on Rankin’s results, derive upper bounds, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasnik Matematicki
سال: 2013
ISSN: 0017-095X
DOI: 10.3336/gm.48.1.01