On geometric progressions on Pell equations and Lucas sequence

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Progressions on Pell Equations

IF Introduction sn IWWW fremner ‘I“ ™onsidered —rithmeti™ progressions on ellipti™ ™urvesF fremner ™onstru™ted ellipti™ ™urves with —rithmeti™ progressions of length UD iFeF r—tion—l points @X; Y A whose XE ™oordin—tes —re in —rithmeti™ progressionF sn — following p—per fremnerD ƒilverm—n —nd „z—n—kis ‘P“ showed th—t — su˜group of the ellipti™ ™urve E@QA with E X Y 2 a X@X 2 n 2 A of r—nk I doe...

متن کامل

On Pell, Pell-Lucas, and balancing numbers

In this paper, we derive some identities on Pell, Pell-Lucas, and balancing numbers and the relationships between them. We also deduce some formulas on the sums, divisibility properties, perfect squares, Pythagorean triples involving these numbers. Moreover, we obtain the set of positive integer solutions of some specific Pell equations in terms of the integer sequences mentioned in the text.

متن کامل

On Some Identities and Generating Functions for k-Pell-Lucas Sequence

We obtain the Binet’s formula for k-Pell-Lucas numbers and as a consequence we obtain some properties for k-Pell-Lucas numbers. Also we give the generating function for the k-Pell-Lucas sequences and another expression for the general term of the sequence, using the ordinary generating function, is provided. Mathematics Subject Classification: 11B37, 05A15, 11B83.

متن کامل

On the intersections of Fibonacci, Pell, and Lucas numbers

We describe how to compute the intersection of two Lucas sequences of the forms {Un(P,±1)}n=0 or {Vn(P,±1)} ∞ n=0 with P ∈ Z that includes sequences of Fibonacci, Pell, Lucas, and Lucas-Pell numbers. We prove that such an intersection is finite except for the case Un(1,−1) and Un(3, 1) and the case of two V-sequences when the product of their discriminants is a perfect square. Moreover, the int...

متن کامل

On sequences without geometric progressions

Several papers have investigated sequences which have no k-term arithmetic progressions, finding bounds on their density and looking at sequences generated by greedy algorithms. Rankin in 1960 suggested looking at sequences without k-term geometric progressions, and constructed such sequences for each k with positive density. In this paper we improve on Rankin’s results, derive upper bounds, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasnik Matematicki

سال: 2013

ISSN: 0017-095X

DOI: 10.3336/gm.48.1.01